Ya está aquí el hidrógeno, la energía del futuro

Pila de hidrógeno. Shutterstock/Kaca Skokanova
por Manuel Peinado Lorca

Empeñados como estamos en hacer de la electricidad la única fuente de energía para el futuro, nos hemos olvidado de la mayor reserva de combustible no contaminante del mundo: el hidrógeno. Este gas se puede generar a partir de fuentes renovables, almacenarse y ser utilizado, a través de pilas de combustible, para generar electricidad sin contaminar.

La clave del futuro energético es encontrar un vector que se pueda acumular y sea capaz de producir energía. El vector propuesto por todos los ponentes de la última Conferencia sobre Transición Energética para recortar las crecientes emisiones de CO₂ fue el hidrógeno (H₂), el gas que sustituirá a todos los combustibles contaminantes en una década, según algunos expertos.

Cómo obtener hidrógeno

El hidrógeno es el elemento químico más abundante, pues forma nueve de cada diez átomos del universo. Donde más abunda es en las estrellas y en los planetas gaseosos gigantes, donde aparece en estado de plasma.

Bajo las condiciones normales de presión y temperatura de la Tierra, el hidrógeno se presenta en forma molecular o diatómica (H₂), siempre en estado gaseoso. En ese estado es muy poco abundante en nuestra atmósfera debido a que su pequeña masa le permite escapar a la atracción gravitatoria más fácilmente que otros gases más pesados. Por eso, aunque es el decimoquinto elemento más abundante en la superficie terrestre, la mayoría forma parte de compuestos químicos como los hidrocarburos y el agua.

Si uno quiere emplear una pila de hidrógeno, lo primero que tiene que conseguir es hidrógeno puro. Hoy día, la manera más económica de producirlo de forma comercial es a partir del gas natural mediante un proceso de reformado con vapor. Sin embargo, las reservas de gas natural son finitas y, por lo tanto, no son una fuente fiable. Se puede extraer hidrógeno del carbón y de las arenas bituminosas, aunque hacerlo aumentaría drásticamente la emisión de CO₂ a la atmósfera. Se podría utilizar también energía nuclear, con los problemas que ello acarrea.

El hidrógeno también se puede obtener por fermentación, por medio de producción biológica en un biorreactor de algas, por procedimientos químicos (reducción química) y por calor (por termólisis).

El procedimiento de obtención más prometedor es por electrólisis hídrica. Es decir, por descomposición del agua en sus dos componentes, oxígeno e hidrógeno, gracias a una corriente eléctrica suministrada por una fuente de alimentación, una batería, una pila o cualquier fuente renovable, que se conecta mediante electrodos al agua. Para disminuir la resistencia al paso de corriente a través del agua se suele añadir un electrolito fuerte como una sal de sodio (Figura).

Demostración sencilla de la electrólisis del agua. Necesitará: un vaso de agua con sal de mesa; dos lápices afilados en ambos extremos; una batería de nueve voltios o un adaptador de 9-12 V; algunos trozos de alambre para empalmar y una cucharadita llena de sal de mesa. Después de conectar todo, se formarán burbujas en las puntas de los lápices de inmediato. Se formarán burbujas de oxígeno en el electrodo + (ánodo). Las burbujas de hidrógeno se formarán en el otro electrodo, el cátodo. La cantidad que se forme será el doble de la cantidad de oxígeno. Elaboración propia

Imaginen ahora una planta de generación renovable de electricidad cercana a una gran fuente de agua salina: el océano. La electricidad necesaria para la electrolisis se produciría mediante aerogeneradores costeros, aprovechando las mareas (energía mareomotriz) o las olas (energía undimotriz).

Una planta industrial de electrolisis descompondría el agua en oxígeno (liberado a la atmósfera sin problema contaminante alguno) e hidrógeno, que, tras un almacenaje en depósitos como se hace con el gas, estaría disponible para ser usado como combustible. Desde los depósitos, el hidrógeno se trasladaría hasta las unidades de consumo (fábricas, hogares o estaciones de servicio), de la misma forma que hacemos con el gas: a través de gasoductos (mejor dicho, de hidroductos) que podrían ser los mismos que actualmente distribuyen gas natural hasta los cuartos de calderas de nuestras casas.

En un futuro no muy lejano, allí donde hoy se encuentra una caldera que quema gas, gasoil o cualquier otro combustible contaminante, habrá una pila de combustible capaz de generar electricidad con el hidrógeno que llegará por hidroductos comerciales. Bastará con inyectar oxígeno procedente de la calle para generar la electricidad que demande todo el edificio con un rendimiento que casi triplica al de la quema de combustibles tradicionales y sin emitir gases contaminantes. Además, la pila de combustible produce vapor de agua como residuo; el vapor podrá usarse para la calefacción en invierno y, acoplado a una máquina de absorción, para transformar el calor en frío y tener aire acondicionado durante el verano.

El hidrógeno ya está aquí

El fabricante de automóviles japonés Honda ha desarrollado la Home Energy Station, un sistema doméstico y autónomo que permite obtener hidrógeno a partir de energía solar para repostar vehículos de pila de combustible y aprovechar el proceso para generar electricidad y agua caliente para el hogar.

Como Japón, los gobiernos de toda Europa ya han comenzado a establecer sus programas de investigación y de desarrollo del hidrógeno, y están en las etapas iniciales de introducción de estas tecnologías en el mercado.

En 2006, Alemania destinó 500 millones de euros a la investigación y al desarrollo del hidrógeno, y comenzó a elaborar sus planes para crear una hoja de ruta nacional con el objetivo declarado de liderar a Europa y al mundo hacia la era del hidrógeno en la década de 2020.

El primer del tren con pilas de hidrógeno circula ya por Baja Sajonia.

Alemania ya ha puesto en circulación el primer tren del mundo impulsado por pilas de hidrógeno que elimina las emisiones contaminantes causadas por la combustión. Este país, que está liderando el uso de las renovables y el abandono de los combustibles fósiles, se une a Japón, que ha apostado claramente por un futuro energético a base de hidrógeno. Algunas compañías, como Honda, DaimlerChrysler, Ford, General Motors/Opel, Hyundai, Kia, Renault/Nissan y Toyota están desarrollando proyectos relacionados con los vehículos de hidrógeno.

En 2018, los modelos Mirai movidos por hidrógeno fabricados por Toyota circulan en Alemania y en Dinamarca. Esta última cuenta ya con diez estaciones de servicio que suministran hidrógeno (ESH) y rellenan el depósito en unos minutos. Alemania dispone ya de 60 ESH, por debajo del líder mundial, Japón, que cuenta con 96.

Con la adecuada planificación, es posible circular por estos países sin quedarse secos. Gracias a una inversión de 350 millones de euros, Alemania planea instalar 400 surtidores y aspira a convertirse en la potencia europea del hidrógeno.

El hidrógeno ya está llamando a nuestras puertas.


Manuel Peinado Lorca, Catedrático de Universidad de Biología Vegetal de la Universidad de Alcalá. Licenciado en Ciencias Biológicas por la Universidad de Granada y doctor en Ciencias Biológicas por la Universidad Complutense de Madrid. En la Universidad de Alcalá ha sido Secretario General, Secretario del Consejo Social, Vicerrector de Investigación y Director del Departamento de Biología Vegetal. Actualmente es Director de la Cátedra de Medio Ambiente de la Fundación General de la Universidad de Alcalá. Fue alcalde de Alcalá de Henares (1999-2003). En el PSOE federal es actualmente miembro del Consejo Asesor para la Transición Ecológica de la Economía y responsable del Grupo de Biodiversidad. En relación con la energía, sus libros más conocidos son El fracking ¡vaya timo! y Fracking, el espectro que sobrevuela Europa. En relación con las ciudades, Tratado de Ecología Urbana.
Artículo publicado por cortesía editorial de

Acerca de La Mar de Onuba 5668 Artículos
Revista onubense de actualidad, cultura y debate, editada por AC LAMDO, entidad sin ánimo de lucro inscrita en el Registro de Asociaciones de Andalucía con el número 4318 de la Sección 1. - Director: Perico Echevarría - © Copyright LAMDO 2017 / ISSN 2603-817X

2 Comentarios

  1. Energia de las mareas G.E.M. y del Viento EOTRAC
    Mediante la electrólisis,el agua se descompone para formar hidrógeno y oxígeno. … El paso de corriente eléctrica de la Energia de las mareas G.E.M. y del Viento EOTRAC
    Hace muchos años logre hacer el simple mecanismo del Generador Eléctrico Mareomotriz (G.E.M.) que permite usar por separado la fuerza del flujo de la marea que hace funcionar las aspas superiores (palas) de cientos o miles de metros cuadrados y de igual forma la fuerza reflujo de las mareas, hace funcionar las aspas inferiores.

    G.E.M. Generador eléctrico mareomotriz – Vista al Mar _ …
    http://www.vistaalmar.es › ingenieria-innovacion › 622-gem-…

  2. Tener energía infinita y limpia,
    Un sueño hecho realidad
    Todo depende de quienes manejan la cometa.

Deje una respuesta

Tu dirección de correo no será publicada.


*


Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.